3.133 \(\int \frac {x^2 (a+b \sin ^{-1}(c x))}{(d-c^2 d x^2)^{5/2}} \, dx\)

Optimal. Leaf size=125 \[ \frac {x^3 \left (a+b \sin ^{-1}(c x)\right )}{3 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {b}{6 c^3 d^2 \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {1-c^2 x^2} \log \left (1-c^2 x^2\right )}{6 c^3 d^2 \sqrt {d-c^2 d x^2}} \]

[Out]

1/3*x^3*(a+b*arcsin(c*x))/d/(-c^2*d*x^2+d)^(3/2)-1/6*b/c^3/d^2/(-c^2*x^2+1)^(1/2)/(-c^2*d*x^2+d)^(1/2)-1/6*b*l
n(-c^2*x^2+1)*(-c^2*x^2+1)^(1/2)/c^3/d^2/(-c^2*d*x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {4681, 266, 43} \[ \frac {x^3 \left (a+b \sin ^{-1}(c x)\right )}{3 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {b}{6 c^3 d^2 \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {1-c^2 x^2} \log \left (1-c^2 x^2\right )}{6 c^3 d^2 \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^2*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(5/2),x]

[Out]

-b/(6*c^3*d^2*Sqrt[1 - c^2*x^2]*Sqrt[d - c^2*d*x^2]) + (x^3*(a + b*ArcSin[c*x]))/(3*d*(d - c^2*d*x^2)^(3/2)) -
 (b*Sqrt[1 - c^2*x^2]*Log[1 - c^2*x^2])/(6*c^3*d^2*Sqrt[d - c^2*d*x^2])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 4681

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(d*f*(m + 1)), x] - Dist[(b*c*n*d^IntPart[p]*(d + e*x
^2)^FracPart[p])/(f*(m + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSi
n[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p
 + 3, 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {x^2 \left (a+b \sin ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{5/2}} \, dx &=\frac {x^3 \left (a+b \sin ^{-1}(c x)\right )}{3 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {\left (b c \sqrt {1-c^2 x^2}\right ) \int \frac {x^3}{\left (1-c^2 x^2\right )^2} \, dx}{3 d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {x^3 \left (a+b \sin ^{-1}(c x)\right )}{3 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {\left (b c \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \frac {x}{\left (1-c^2 x\right )^2} \, dx,x,x^2\right )}{6 d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {x^3 \left (a+b \sin ^{-1}(c x)\right )}{3 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {\left (b c \sqrt {1-c^2 x^2}\right ) \operatorname {Subst}\left (\int \left (\frac {1}{c^2 \left (-1+c^2 x\right )^2}+\frac {1}{c^2 \left (-1+c^2 x\right )}\right ) \, dx,x,x^2\right )}{6 d^2 \sqrt {d-c^2 d x^2}}\\ &=-\frac {b}{6 c^3 d^2 \sqrt {1-c^2 x^2} \sqrt {d-c^2 d x^2}}+\frac {x^3 \left (a+b \sin ^{-1}(c x)\right )}{3 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {b \sqrt {1-c^2 x^2} \log \left (1-c^2 x^2\right )}{6 c^3 d^2 \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 103, normalized size = 0.82 \[ \frac {\sqrt {d-c^2 d x^2} \left (2 a c^3 x^3+2 b c^3 x^3 \sin ^{-1}(c x)-b \sqrt {1-c^2 x^2}-b \left (1-c^2 x^2\right )^{3/2} \log \left (c^2 x^2-1\right )\right )}{6 c^3 d^3 \left (c^2 x^2-1\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(5/2),x]

[Out]

(Sqrt[d - c^2*d*x^2]*(2*a*c^3*x^3 - b*Sqrt[1 - c^2*x^2] + 2*b*c^3*x^3*ArcSin[c*x] - b*(1 - c^2*x^2)^(3/2)*Log[
-1 + c^2*x^2]))/(6*c^3*d^3*(-1 + c^2*x^2)^2)

________________________________________________________________________________________

fricas [F]  time = 0.88, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c^{2} d x^{2} + d} {\left (b x^{2} \arcsin \left (c x\right ) + a x^{2}\right )}}{c^{6} d^{3} x^{6} - 3 \, c^{4} d^{3} x^{4} + 3 \, c^{2} d^{3} x^{2} - d^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b*x^2*arcsin(c*x) + a*x^2)/(c^6*d^3*x^6 - 3*c^4*d^3*x^4 + 3*c^2*d^3*x^2 - d^3)
, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \arcsin \left (c x\right ) + a\right )} x^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)*x^2/(-c^2*d*x^2 + d)^(5/2), x)

________________________________________________________________________________________

maple [C]  time = 0.33, size = 1219, normalized size = 9.75 \[ \frac {a x}{3 c^{2} d \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}-\frac {a x}{3 c^{2} d^{2} \sqrt {-c^{2} d \,x^{2}+d}}+\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{2} x^{5}}{3 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}+\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-c^{2} x^{2}+1\right ) x^{3}}{6 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}-\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{2} \left (-c^{2} x^{2}+1\right ) x^{5}}{6 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{4} \arcsin \left (c x \right ) x^{7}}{d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}-\frac {2 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right ) x^{4}}{d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \sqrt {-c^{2} x^{2}+1}\, x^{4}}{2 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}+\frac {4 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right ) x^{2}}{3 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right ) c}-\frac {2 i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )}{3 c^{3} d^{3} \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{2} \arcsin \left (c x \right ) x^{5}}{d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}-\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, x^{3}}{6 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, x^{2}}{2 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right ) c}-\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) \sqrt {-c^{2} x^{2}+1}}{3 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right ) c^{3}}+\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{3} \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right ) x^{6}}{d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x^{3}}{3 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}}{6 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right ) c^{3}}-\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{4} x^{7}}{6 d^{3} \left (3 c^{8} x^{8}-9 c^{6} x^{6}+10 c^{4} x^{4}-5 c^{2} x^{2}+1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (1+\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{3 c^{3} d^{3} \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x)

[Out]

1/3*a/c^2*x/d/(-c^2*d*x^2+d)^(3/2)-1/3*a/c^2/d^2*x/(-c^2*d*x^2+d)^(1/2)+1/3*I*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*
c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^2*x^5+1/6*I*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c
^4*x^4-5*c^2*x^2+1)*(-c^2*x^2+1)*x^3-1/6*I*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*
x^2+1)*c^2*(-c^2*x^2+1)*x^5+b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^4*arcs
in(c*x)*x^7-2*I*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c*(-c^2*x^2+1)^(1/2)
*arcsin(c*x)*x^4-1/2*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c*(-c^2*x^2+1)^
(1/2)*x^4+4/3*I*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)/c*(-c^2*x^2+1)^(1/2)
*arcsin(c*x)*x^2-2/3*I*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/d^3/(c^2*x^2-1)*arcsin(c*x)-b*(-d*(c^2*
x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*c^2*arcsin(c*x)*x^5-1/6*I*b*(-d*(c^2*x^2-1))^(1
/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^2+1)*x^3+1/2*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6
+10*c^4*x^4-5*c^2*x^2+1)/c*(-c^2*x^2+1)^(1/2)*x^2-1/3*I*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c
^4*x^4-5*c^2*x^2+1)/c^3*arcsin(c*x)*(-c^2*x^2+1)^(1/2)+I*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*
c^4*x^4-5*c^2*x^2+1)*c^3*(-c^2*x^2+1)^(1/2)*arcsin(c*x)*x^6+1/3*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*
x^6+10*c^4*x^4-5*c^2*x^2+1)*arcsin(c*x)*x^3-1/6*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5
*c^2*x^2+1)/c^3*(-c^2*x^2+1)^(1/2)-1/6*I*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(3*c^8*x^8-9*c^6*x^6+10*c^4*x^4-5*c^2*x^
2+1)*c^4*x^7+1/3*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^3/d^3/(c^2*x^2-1)*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2
))^2)

________________________________________________________________________________________

maxima [A]  time = 0.71, size = 153, normalized size = 1.22 \[ \frac {1}{6} \, b c {\left (\frac {1}{c^{6} d^{\frac {5}{2}} x^{2} - c^{4} d^{\frac {5}{2}}} - \frac {\log \left (c x + 1\right )}{c^{4} d^{\frac {5}{2}}} - \frac {\log \left (c x - 1\right )}{c^{4} d^{\frac {5}{2}}}\right )} - \frac {1}{3} \, b {\left (\frac {x}{\sqrt {-c^{2} d x^{2} + d} c^{2} d^{2}} - \frac {x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} c^{2} d}\right )} \arcsin \left (c x\right ) - \frac {1}{3} \, a {\left (\frac {x}{\sqrt {-c^{2} d x^{2} + d} c^{2} d^{2}} - \frac {x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} c^{2} d}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

1/6*b*c*(1/(c^6*d^(5/2)*x^2 - c^4*d^(5/2)) - log(c*x + 1)/(c^4*d^(5/2)) - log(c*x - 1)/(c^4*d^(5/2))) - 1/3*b*
(x/(sqrt(-c^2*d*x^2 + d)*c^2*d^2) - x/((-c^2*d*x^2 + d)^(3/2)*c^2*d))*arcsin(c*x) - 1/3*a*(x/(sqrt(-c^2*d*x^2
+ d)*c^2*d^2) - x/((-c^2*d*x^2 + d)^(3/2)*c^2*d))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {x^2\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}{{\left (d-c^2\,d\,x^2\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(5/2),x)

[Out]

int((x^2*(a + b*asin(c*x)))/(d - c^2*d*x^2)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2} \left (a + b \operatorname {asin}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(a+b*asin(c*x))/(-c**2*d*x**2+d)**(5/2),x)

[Out]

Integral(x**2*(a + b*asin(c*x))/(-d*(c*x - 1)*(c*x + 1))**(5/2), x)

________________________________________________________________________________________